** 成果发表在 . J. Li et al., "RISC-V-Based GPGPU With Vector Capabilities for High-Performance Computing," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 33, no. 8, pp. 2239-2251, Aug. 2025, doi: 10.1109/TVLSI.2025.3574427.
[[File:Egret2_die.jpg|230px|Egret2 die Chip]] [[File:Egret2_chip.jpg|180px|Egret2 chip Chip]] [[File:Egret2_EVB.jpg|280px|Egret2 EVB Chip]]
|-
|-
|
|
第69行:
第97行:
** 生物神经网络具备后天生长特性,可以增加神经网络原来不具备的功能
** 生物神经网络具备后天生长特性,可以增加神经网络原来不具备的功能
** 生物神经网的记忆是分布式的,采用内容提取记忆的方式
** 生物神经网的记忆是分布式的,采用内容提取记忆的方式
** 最新成果:Hu He, Qilin Wang, Xu Yang, Yunlin Lei, Jian Cai, Ning Deng, A memory neural system built based on spiking neural network, Neurocomputing (https://www.sciencedirect.com/science/article/pii/S0925231221002988); He Hu, Shang Yingjie, Yang Xu, Deng Ning, etc., Constructing an Associative Memory System Using Spiking Neural Network, Frontiers in Neuroscience,https://www.frontiersin.org/article/10.3389/fnins.2019.00650 ; He H, Yang X, Xu Z, Deng N, Shang Y, et al. (2019) Implementing artificial neural networks through bionic construction. PLOS ONE 14(2): e0212368. https://doi.org/10.1371/journal.pone.0212368; Xu Yang, Guo Liu, Songgaojun Deng, Zichao Wei, Hu He*, Yingjie Shang, Ning Deng. Artif Intell Rev (2018). https://doi.org/10.1007/s10462-018-9626-2
** 最新成果:Hu He, Qilin Wang, Xu Yang, Yunlin Lei, Jian Cai, Ning Deng, A memory neural system built based on spiking neural network, Neurocomputing (2021) (https://www.sciencedirect.com/science/article/pii/S0925231221002988); He Hu, Shang Yingjie, Yang Xu, Deng Ning, etc., Constructing an Associative Memory System Using Spiking Neural Network, Frontiers in Neuroscience,https://www.frontiersin.org/article/10.3389/fnins.2019.00650 ; He H, Yang X, Xu Z, Deng N, Shang Y, et al. (2019) Implementing artificial neural networks through bionic construction. PLOS ONE 14(2): e0212368. https://doi.org/10.1371/journal.pone.0212368; Xu Yang, Guo Liu, Songgaojun Deng, Zichao Wei, Hu He*, Yingjie Shang, Ning Deng. Artif Intell Rev (2018). https://doi.org/10.1007/s10462-018-9626-2
[[File:Neuronetwork.jpg|200px|Binoic Neural Network]] [[File:Spiking.jpg|500px|Spiking of memory]]
[[File:Neuronetwork.jpg|200px|Binoic Neural Network]] [[File:Spiking.jpg|500px|Spiking of memory]]
成果发表在 . J. Li et al., "RISC-V-Based GPGPU With Vector Capabilities for High-Performance Computing," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 33, no. 8, pp. 2239-2251, Aug. 2025, doi: 10.1109/TVLSI.2025.3574427.
Egret CPU流水线架构
兼容RISC-V指令集的Egret CPUEgret CPU
与厦门半导体投资集团有限公司合作,开发高性能RISC-V指令集嵌入式CPU。开发代号Egret。
支持RV32IMADCV指令集;
支持内存管理及物理内存保护机制;
支持定时器中断、软件中断以及最多64个外部中断;
I-Cache、D-Cache大小可配置,支持L1-Cache和L2-Cache;
提供配套的嵌入式操作系统和软件工具链;
指令并行度为2;
单核性能不低于1.8 DMIPS/MHz, 2.88Coremark/MHz;
采用SMIC 40nm LL工艺流片,频率不低于600MHz;
采用UMC 28nm工艺流片的双核RISC-V SoC预计于2021年7月流片;
与清华大学计算机系合作开发的RISC-V矢量扩展CPU于2020年12月流片,已经完成封装和测试。
LilyARM处理器架构
超标量(Superscalar)/超长指令字(VLIW)混合架构处理器LilyARM
采用超标量和超长指令字混合流水线设计技术(11级流水线)
在六发射VLIW流水线基础上实现双发射超标量指令执行
首次实现VLIW流水线分支预测功能
兼容ARM v7a 指令集,1.9DMIPS/MHz,实测频率150MHz(@SMIC130nm)
实现了模拟电路隐蔽型硬件木马和抗硬件木马设计
集成了嵌入式1Mb的ReRAM
成果发表在 Y. Hou, Hu He, etc., "On-Chip Analog Trojan Detection Framework for Microprocessor Trustworthiness," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 10, pp. 1820-1830, Oct. 2019
论文:CDSP: A Solution for Privacy and Security of Multimedia Information Processing in Industrial Big Data and Internet of Things, https://doi.org/10.3390/s19030556